Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Biotechnol ; 81: 102916, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36870250

RESUMO

Microbial consortia within biofilms are frequently found in structured organization in nature and are thought to bear great potential for productive biotechnological applications, such as the degradation of complex substrates, biosensing, or the production of chemical compounds. However, in-depth understanding of their organizational principles, as well as comprehensive design criteria of structured microbial consortia for industrial applications are still limited. It is hypothesized that biomaterial engineering of such consortia within scaffolds can advance the field by providing defined in vitro mimics of naturally occurring and industrially applicable biofilms. Such systems will allow for adjustment of important microenvironmental parameters and in-depth analysis with high temporal and spatial resolution. In this review, we provide the background of biomaterial engineering of structured biofilm consortia, show approaches for their design, and demonstrate tools to analyze their metabolic state.


Assuntos
Biofilmes , Consórcios Microbianos , Biologia Sintética , Biotecnologia
2.
J Mater Chem B ; 10(10): 1663-1674, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195648

RESUMO

The soft colloidal probe (SCP) assay is a highly versatile sensing principle employing micrometer-sized hydrogel particles as optomechanical transducer elements. We report the synthesis, optimization, and conjugation of SCPs with defined narrow size distribution and specifically tailored mechanical properties and functionalities for integration into a microinterferometric optomechanical biosensor platform. Droplet-based microfluidics was used to crosslink polyethylene glycol (PEG) macromonomers by photocrosslinking and thiol-Michael addition. The effect of several synthesis parameters, i.e. PEG and radical initiator solid content, molecular weight and architecture of macromonomers, as well as UV exposure time and energy, were examined. SCPs were characterized with regard to the conversion of contained functional groups, morphology and mechanical properties by bright-field, confocal laser scanning and reflection interference contrast microscopy, as well as force spectroscopy. Functional groups were introduced during SCP synthesis and by several post-synthesis procedures, based on photoradical grafting and thiol-Michael addition. Preparation of SCPs by thiol-Michael addition and subsequent coupling of maleimide derivatives to unreacted thiols proved to be the superior strategy, while other approaches were associated with changes in the properties of the SCP. The newly developed SCPs were tested for their sensing capabilities employing the biotin-streptavidin-system. Biotin detection in the range of 10-7 to 10-10 M verified the concept of the synthesis strategy and the advantage of using monodisperse SCPs for easier and faster sensing applications of the SCP assay.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Biotina , Coloides , Microfluídica/métodos , Polietilenoglicóis/química , Compostos de Sulfidrila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...